Air Quality Review and Assessment - Stage 2

A report produced for **Ballymena Borough Council**

Air Quality Review and Assessment - Stage 2

Title	Air Quality Review and Assessment - Stage 2				
Customer	Ballymena Borough Cour	ncil			
Customer reference	ED20615172	ED20615172			
Confidentiality, copyright and reproduction	Copyright AEA Technology plc All rights reserved. Enquiries about copyright and reproduction should be addressed to the Commercial Manager, AEA Technology plc.				
File reference	J/EQ/Stage3_R&A/Irela	nd			
Report number	AEAT/ENV/R/1016				
Report status	Issue 1				
ISBN number					
		C,			
	Name	Signature	Date		
Author	Melanie Hobson				
Reviewed by	Beth Conlan				
Approved by	Beth Conlan				

Executive Summary

The UK Government published its strategic policy framework for air quality management in 1995 establishing national strategies and policies on air quality, which culminated in the Environment Act, 1995 in Great Britain. The National Air Quality Strategy provides a framework for air quality control through air quality management and air quality standards. New national air quality standards have been proposed by the Expert Panel on Air Quality Standards (EPAQS) for the UK. These and other air quality standards and their objectives have been enacted through the Air Quality Regulations in England, Wales and Scotland (2000). The GB Environment Act 1995 requires Local Authorities to undertake an air quality review. In areas where air quality objectives are not anticipated to be met by the specified date, Local Authorities are required to establish Air Quality Management Areas to improve air quality.

In Northern Ireland there are at present no equivalent Air Quality Regulations. However, there is a duty to meet the Air Quality limit values set within the European Commission Air Quality Framework Directive on which the UK national air quality objectives are based. Consequently, Councils in Northern Ireland have proceeded with the review and assessment process of air quality on a non-statutory basis.

The first step in this process is to undertake a review of current and potential future air quality in a three staged approach. Ballymena Borough Council have completed a Stage 1 review and assessment which concluded that a Stage 2 review and assessment was required for the pollutants nitrogen dioxide, sulphur dioxide and particulate matter.

This report is equivalent to a stage two air quality review as outlined in the Government's published guidance. The air quality review investigates current and potential future air quality through an examination of the location and size of principal emission sources, emissions modelling exercises and by reference to monitored air quality data.

The conclusions of the report are as follows:

The air quality objectives for the following pollutants are likely to be met and a third stage review is not required of emissions from vehicular and industrial sources:

- PM₁₀
- Sulphur dioxide

Emissions arising from road transport at 5 road junctions in the Ballymena Borough Council area may cause an exceedence of the nitrogen dioxide objective. It is recommended that diffusion tube monitoring is undertaken at the identified receptors and then consideration be given to proceeding to a Stage 3 review and assessment.

Contents

1	Int	roduction to the air quality review	1
	1.2	PURPOSE OF THE STUDY APPROACH TAKEN INFORMATION PROVIDED BY BALLYMENA BOROUGH COUNCIL TO	1 1
	1.3	SUPPORT THIS ASSESSMENT	2
		1.3.1 Ballymena and its environs1.3.2 Local air quality monitoring data	2 2 2
		1.3.3 Traffic data1.3.4 Part A and B process and >5 MW (thermal) combustion plants	3 3
2	The	e updated Air Quality Strategy	4
	2.1	OVERVIEW OF THE PRINCIPLES AND MAIN ELEMENTS OF THE AIR QUALITY STRATEGY 2.1.1 National Air Quality Standards	5 6
		2.1.2 Policies in place to allow these objectives to be achieved	8
	2.2	2.1.3 Timescales to achieve the objectives AIR QUALITY REVIEWS	8 8
	2.3	LOCATIONS THAT THE REVIEW AND ASSESSMENT MUST CONCENTRATE ON	12
3	Rev	view and assessment of nitrogen dioxide	15
	3.1	INTRODUCTION	15
		3.1.1 Standards and objectives for nitrogen dioxide3.1.2 The National Perspective	15 15
		BACKGROUND CONCENTRATIONS OF NITROGEN DIOXIDE	16
	3.3	MONITORING OF NITROGEN DIOXIDE 3.3.1 Diffusion tube data	16 16
	3.4	IMPACT OF ROAD TRAFFIC ON CONCENTRATIONS OF OXIDES OF NITROGEN	17
	3.5	CONCLUSIONS FOR NITROGEN DIOXIDE CONCENTRATIONS IN THE	
		BALLYMENA BOROUGH COUNCIL AREA	19
4	Rev	view and assessment of PM ₁₀	20
	4.1	INTRODUCTION 4.1.1 Standards and objectives for particulate matter 4.1.2 The National Perspective	20 20 20
	4.2	•	21
		BACKGROUND CONCENTRATIONS OF PM ₁₀ IMPACT OF ROAD TRAFFIC ON PM ₁₀	21 22
	4.4	CONCLUSIONS FOR PM ₁₀ CONCENTRATIONS IN THE BALLYMENA	
		BOROUGH COUNCIL AREA	23

5	Rev	view and assessment of sulphur dioxide	24
	5.1	INTRODUCTION	24
		5.1.1 Standards and objectives for sulphur dioxide	24
		5.1.2 The National Perspective	24
	5.2	BACKGROUND CONCENTRATIONS OF SULPHUR DIOXIDE	25
	5.3	MONITORING OF SULPHUR DIOXIDE	26
	5.4	IMPACT OF INDUSTRY ON CONCENTRATIONS OF SULPHUR DIOXIDE	26
		5.4.1 Michelin Tyres Plc	26
		5.4.2 Gallaher Ltd	27
	5.5	CONCLUSIONS FOR SULPHUR DIOXIDE CONCENTRATIONS IN THE	
		BALLYMENA BOROUGH COUNCIL AREA	27
6	Co	nclusions and recommendations for each pollutant	28
	6.1	NITROGEN DIOXIDE	28
	6.2	PARTICULATE MATTER (PM ₁₀)	28
		SULPHUR DIOXIDE	28
7	Ref	ferences	29

Appendices APPENDIX 1

APPENDIX 1 Diffusion tube monitoring data
APPENDIX 2 Detailed traffic flow data

Acronyms and definitions

AQS Air Quality Strategy

AADTF annual average daily traffic flow APEG Airborne Particles Expert Group AQMA Air Quality Management Area AUN Automatic Urban Network CHP Combined Heat and Power plant

CNS central nervous system
CO Carbon monoxide

CRI Chemical Release Inventory (now the Pollution Inventory)
DEFRA Department of the Environment, Food and Rural Affairs.

DMRB Design Manual for Roads and Bridges

EA Environment Agency

EPA Environmental Protection Act

EPAQS Expert Panel on Air Quality Standards

HA Highways Agency HFO heavy fuel oil HGV heavy goods vehicle

IPPC Integrated Pollution Prevention and Control

M mega (1x10⁶) MoD Ministry of Defence

NAEI National Atmospheric Emission Inventory NETCEN National Environmental Technology Centre

NO₂ Nitrogen dioxide
 NO_x Oxides of nitrogen
 PG Process Guidance (notes)
 PI pollution inventory
 ppb parts per billion
 ppm parts per million

PSG Pollutant Specific Guidance (see Reference section)

SO₂ Sulphur dioxide SoS Secretary of State

SSAQR Second Stage Air Quality Review

TEOM tapered element oscillating microbalance

VOC volatile organic compound

1 Introduction to the air quality review

The UK Government published its strategic policy framework for air quality management in 1995 establishing national strategies and policies on air quality, which culminated in the Environment Act, 1995 in Great Britain. The National Air Quality Strategy provides a framework for air quality control through air quality management and air quality standards. New national air quality standards have been proposed by the Expert Panel on Air Quality Standards (EPAQS) for the UK. These and other air quality standards and their objectives have been enacted through the Air Quality Regulations in England, Wales and Scotland (2000). The GB Environment Act 1995 requires Local Authorities to undertake an air quality review. In areas where air quality objectives are not anticipated to be met by the specified date, Local Authorities are required to establish Air Quality Management Areas to improve air quality.

In Northern Ireland there are at present no equivalent Air Quality Regulations. However, there is a duty to meet the Air Quality limit values set within the European Commission Air Quality Framework Directive on which the UK national air quality objectives are based. Consequently, Councils in Northern Ireland have proceeded with the review and assessment process of air quality on a non-statutory basis.

1.1 PURPOSE OF THE STUDY

NETCEN was commissioned by Ballymena Borough Council to complete a Second Stage Air Quality Review (SSAQR) within their area for road vehicular and industrial sources of air pollution. The review:

- Investigates present and potential future air quality in the Ballymena Borough Council area
- Identifies any actions that are likely to be required by Ballymena Borough Council under Part IV of the GB Environment Act, 1995
- Recommends actions, if necessary, to control the subsequent air quality within the Ballymena Borough Council area

1.2 APPROACH TAKEN

The approach taken in this study was to:

- 1. Identify the principal sources of pollutant emissions affecting air quality in the Ballymena Borough Council area.
- 2. Model expected present and potential future levels of pollutant concentrations in the Ballymena Borough Council area and identify the areas of the district which are likely to experience the highest concentrations of pollutants.
- 3. Indicate whether present and predicted future air quality in the Borough is likely to comply with the requirements of the UK Air Quality Strategy.
- 4. Identify areas for further investigation.

In preparing this report the latest version of the Government Pollutant Specific Guidance has been used (LAQM TG4(00)).

This report is structured in the following way: Chapter 1 introduces the UK Air Quality Strategy (AQS) and the local data used in this review and assessment. Chapter 2 provides more details on the local air quality management process. Chapters 3 to 5 consider the pollutants specified in the AQS and give an overview including the AQS objectives, the national perspective and the input required for this review. Data from national concentration maps, monitoring studies, road traffic, and local and distant point sources are then considered. Each chapter closes with an indication of whether the relevant AQS objective is expected to be met, or whether further work is required. Chapter 6 summarises all the findings and recommendations of the work.

1.3 INFORMATION PROVIDED BY BALLYMENA BOROUGH COUNCIL TO SUPPORT THIS ASSESSMENT

The following information from Ballymena Borough Council that was used to complete this review and assessment: Local air quality monitoring data

- Proposed developments
- Part A and B processes under the Industrial Pollution Control (Northern Ireland) Order 1997
- Traffic flow and speed data
- Transport strategy
- Large combustion sources

1.3.1 Ballymena and its environs

In 1997 the estimated population of the area was 58,200. The borough has a central location within Northern Ireland with a good road and rail communication network. It is served by the M2 motorway. Ballymena is the regional administrative centre for many organisations and is also a popular retail area. Farming plays a major role in the economy of the borough.

1.3.1.1 Industrial and Transport Development in Ballymena Borough Council

Some developments may have an important impact on air quality in the future and are therefore considered in the Stage 2 Review and Assessment.

1.3.2 Local air quality monitoring data

1.3.2.1 Extent of data available

Ballymena Borough Council has been monitoring nitrogen dioxide using passive diffusion tube samplers. Appendix 1 gives more information about the local air quality monitoring.

1.3.2.2 Quality Assurance/Quality control of data

The diffusion tubes were analysed by Lambeth Scientific Services Limited, which participate in the laboratory intercomparison exercises for the UK National NO₂ Diffusion Tube Network. The results in this report have therefore been corrected for analyst bias as advised in the Government Pollutant Specific Guidance.

1.3.3 Traffic data

Appendix 2 summarises the traffic information used in the assessment.

1.3.3.1 Flow and speed

Ballymena Borough Council provided traffic flow measurements at a range of locations within Ballymena and in the surrounding area taken at varying times. Average traffic speeds and HGV percentages were also supplied.

1.3.3.2 Traffic growth

The national air quality objectives are targets for 2004 or 2005. Traffic growth forecasts were provided by Ballymena Borough Council for 2005.

1.3.3.3 Fraction of HGVs

The model requires estimates of the fraction of HGVs on the roads to predict the pollutant concentrations. This data was unavailable from Ballymena Borough Council. Therefore a conservative estimate of 12% has been used as suggested by Ballymena Borough Council.

1.3.3.4 Distance of the receptor from the centre of the road and the kerbside.

The model which is used to predict the roadside concentrations requires estimates of both the distance of the receptor and the distance of the kerbside from the centrepoint of the road. This information was available from Ballymena Borough Council either directly or in the form of maps (scale 1:1250) on which the required distances could be measured.

1.3.4 Part A and B process and >5 MW (thermal) combustion plants

Thermal combustion plants can contribute a range of pollutants to ambient air. Ballymena Borough Council provided a list of two combustion processes that needed further assessment in a Stage 2:

- Michelin Tyres Plc
- Gallaher Ltd

2 The updated Air Quality Strategy

The UK Government published its proposals for review of the National Air Quality Strategy in early 1999 (DETR, 1999). These proposals included revised objectives for many of the regulated pollutants. A key factor in the proposals to revise the objectives was the agreement in June 1998 at the European Union Environment Council of a Common Position on Air Quality Daughter Directives (AQDD).

Following consultation on the Review of the National Air Quality Strategy, the Government prepared the Air Quality Strategy for England, Scotland, Wales and Northern Ireland for consultation in August 1999. It was published in January 2000 (DETR, 2000).

Table 2.1 Major elements of the Environment Act 1995

Part IV Air Quality	Commentary
Section 80	Obliges the Secretary of State (SoS) to publish a National Air Quality Strategy as soon as possible.
Section 81	Obliges the Environment Agency to take account of the strategy.
Section 82	Requires local authorities, any unitary or district, to review air quality and to assess whether the air quality standards and objectives are being achieved. Areas where standards fall short must be identified.
Section 83	Requires a local authority, for any area where air quality standards are not being met, to issue an order designating it an air quality management area (AQMA).
Section 84	Imposes duties on a local authority with respect to AQMAs. The local authority must carry out further assessments and draw up an action plan specifying the measures to be carried out and the timescale to bring air quality in the area back within limits.
Section 85	Gives reserve powers to cause assessments to be made in any area and to give instructions to a local authority to take specified actions. Authorities have a duty to comply with these instructions.
Section 86	Provides for the role of County Councils to make recommendations to a district on the carrying out of an air quality assessment and the preparation of an action plan.
Section 87	Provides the SoS with wide ranging powers to make regulations concerning air quality. These include standards and objectives, the conferring of powers and duties, the prohibition and restriction of certain activities or vehicles, the obtaining of information, the levying of fines and penalties, the hearing of appeals and other criteria. The regulations must be approved by affirmative resolution of both Houses of Parliament.
Section 88	Provides powers to make guidance which local authorities must have regard to.

2.1 OVERVIEW OF THE PRINCIPLES AND MAIN ELEMENTS OF THE AIR QUALITY STRATEGY

The main elements of the AQS can be summarised as follows:

- The use of a health effects based approach using national air quality standards and objectives.
- The use of policies by which the objectives can be achieved and which include the input of important actors such as industry, transportation bodies and local authorities.
- The predetermination of timescales with a target dates of 2003, 2004 and 2005 for the achievement of objectives and a commitment to review the Strategy every three years.

It is intended that the NAQS will provide a framework for the improvement of air quality that is both clear and workable. In order to achieve this, the Strategy is based on several principles that include:

- the provision of a statement of the Government's general aims regarding air quality;
- clear and measurable targets;
- a balance between local and national action and
- a transparent and flexible framework.

Co-operation and participation by different economic and governmental sectors is also encouraged within the context of existing and potential future international policy commitments.

2.1.1 National Air Quality Standards

At the centre of the AQS is the use of national air quality standards to enable air quality to be measured and assessed. These also provide the means by which objectives and timescales for the achievement of objectives can be set. Most of the proposed standards have been based on the available information concerning the health effects resulting from different ambient concentrations of selected pollutants and are the consensus view of medical experts on the Expert Panel on Air Quality Standards (EPAQS). These standards and associated specific objectives to be achieved between 2003 and 2008 are shown in Table 2.2. The table shows the standards in ppb and μg m⁻³ with the number of exceedences that are permitted (where applicable) and the equivalent percentile.

Specific objectives relate either to achieving the full standard or, where use has been made of a short averaging period, objectives are sometimes expressed in terms of percentile compliance. The use of percentiles means that a limited number of exceedences of the air quality standard over a particular timescale, usually a year, are permitted. This is to account for unusual meteorological conditions or particular events such as November 5th. For example, if an objective is to be complied with at the 99.9th percentile, then 99.9% of measurements at each location must be at or below the level specified.

Table 2.2 Air Quality Objectives in the Air Quality Regulations (2000) for the purpose of Local Air Quality Management

Pollutant	Concentration limits		Averaging period	Objective	
				[number of permitted exceedences a y and equivalent percentile]	
	$(\mu g m^{-3})$	(ppb)		$(\mu g m^{-3})$	date for objective
Benzene	16.25	5	running annual mean	16.25	by 31.12.2003
1,3-butadiene	2.25	1	running annual mean	2.25	by 31.12.2003
СО	11,600	10,000	running 8-hour mean	11,600	by 31.12.2003
Pb	0.5	-	annual mean	0.5	by 31.12. 2004
10	0.25	-	annual mean	0.25	by 31.12. 2008
	200	105	1 hour mean	200	by 31.12.2005
NO ₂ (see note)					8 exceedences a year or he 99.8 th percentile]
	40	21	annual mean	40	by 31.12.2005
	50	_	24-hour mean	50	by 31.12.2004
PM ₁₀ (gravimetric)				[maximum of 35 exceedences a year or ~ equivalent to the 90 th percentile]	
(see note)	40	-	annual mean	40	by 31.12.2004
	266	100	15 minute mean	266	by 31.12.2005
				[maximum of 35 exceedences a year or equivalent to the 99.9 th percentile]	
	350	132	1 hour mean	350	by 31.12.2004
SO ₂					4 exceedences a year or he 99.7 th percentile]
	125	47	24 hour mean	125	by 31.12.2004
				[maximum of 3 exceedences a year or equivalent to the 99 th percentile]	

Notes

- 1. Conversions of ppb and ppm to ($\mu g \text{ m}^{-3}$) correct at 20°C and 1013 mb.
- 2. The objectives for nitrogen dioxide are provisional.
- 3. PM_{10} measured using the European gravimetric transfer standard or equivalent. The Government and the devolved administrations see this new 24-hour mean objective for particles as a staging post rather than a final outcome. Work has been set in hand to assess the prospects of strengthening the new objective.

2.1.2 Policies in place to allow these objectives to be achieved

The policy framework to allow these objectives to be achieved is one that that takes a local air quality management approach. This is superimposed upon existing national and international regulations in order to effectively tackle local air quality issues as well as issues relating to wider spatial scales. National and EC policies that already exist provide a good basis for progress towards the air quality objectives set for 2003 to 2008. For example, the Environmental Protection Act 1990 allows for the monitoring and control of emissions from industrial processes and various EC Directives have ensured that road transport emission and fuel standards are in place. These policies are being developed to include more stringent controls. Recent developments in the UK include the announcement by the Environment Agency in January 2000 on controls on emissions of SO₂ from coal and oil fired power stations. This system of controls means that by the end of 2005 coal and oil fired power stations will meet the air quality standards set out in the AQS.

Local air quality management provides a strategic role for local authorities in response to particular air quality problems experienced at a local level. This builds upon current air quality control responsibilities and places an emphasis on bringing together issues relating to transport, waste, energy and planning in an integrated way. This integrated approach involves a number of different aspects. It includes the development of an appropriate local framework that allows air quality issues to be considered alongside other issues relating to polluting activity. It should also enable co-operation with and participation by the general public in addition to other transport, industrial and governmental authorities.

An important part of the Strategy is the requirement for local authorities to carry out air quality reviews and assessments of their area against which current and future compliance with air quality standards can be measured. Over the longer term, these will also enable the effects of policies to be studied and therefore help in the development of future policy. The Government has prepared guidance to help local authorities to use the most appropriate tools and methods for conducting a review and assessment of air quality in their Borough. This is part of a package of guidance being prepared to assist with the practicalities of implementing the AQS. Other guidance covers air quality and land use planning, air quality and traffic management and the development of local air quality action plans and strategies.

2.1.3 Timescales to achieve the objectives

In most local authorities in the UK, objectives will be met for most of the pollutants within the timescale of the objectives shown in Table 2.2. It is important to note that the objectives for NO_2 remain provisional. The Government has recognised the problems associated with achieving the standard for ozone and this will not therefore be a statutory requirement. Ozone is a secondary pollutant and transboundary in nature and it is recognised that local authorities themselves can exert little influence on concentrations when they are the result of regional primary emission patterns.

2.2 AIR QUALITY REVIEWS

A range of Technical Guidance has been issued to enable air quality to be monitored, modelled, reviewed and assessed in an appropriate and consistent fashion. This includes the Technical Guidance Note LAQM.TG4(98), and the latest version LAQM.TG4(00) May 2000, on 'Review and Assessment: Pollutant Specific Guidance'. This review and assessment has considered the procedures set out in the latest consultation draft.

The primary objective of undertaking a review of air quality is to identify any areas that are unlikely to meet national air quality objectives and ensure that air quality is considered in local authority decision making processes. The complexity and detail required in a review depends on the risk of failing to achieve air quality objectives and it has been proposed therefore that reviews should be carried out in three stages. All three stages of review and assessment may be necessary and every authority is expected to undertake at least a first stage review and assessment of air quality in their authority area. The Stages are briefly described in the following table, Table 2.3.

 Table 2.3
 Brief details of Stages in the Air Quality Review and Assessment process

Stage	Objective	Approach	Outcome
First Stage Review and Assessment	 Identify all significant pollutant sources within or outside of the authority's area. 	 Compile and collate a list of potentially significant pollution sources using the assessment criteria described in the Pollutant Specific Guidance 	
	 Identify those pollutants where there is a risk of exceeding the air quality objectives, and for which further investigation is needed. 	Identify sources requiring further investigation.	 Decision about whether a Stage 2 Review and Assessment is needed for one or more pollutants. If not, no further review and assessment is necessary.
Second Stage Review and Assessment	 Further screening of significant sources to determine whether there is a significant risk of the air quality objectives being exceeded. 	 Use of screening models or monitoring methods to assess whether there is a risk of exceeding the air quality objectives. 	
	• Identify those pollutants where there is a risk of exceeding the objectives, and for which further investigation is needed.	The assessment need only consider those locations where the highest likely concentrations are expected, and where public exposure is relevant.	• Decision about whether a Stage 3 Review and Assessment is needed for one or more pollutants. If, as a result of estimations of ground level concentrations at suitable receptors, a local authority judges that there is no significant risk of not achieving an air quality objective, it can be confident that an Air Quality Management Area (AQMA) will not be required.
			 However, if there is doubt that an air quality objective will be achieved a third stage review should be conducted.

AEA Technology 10

 Table 2.3 (contd.)
 Brief details of Stages in the Review and Assessment process

Stage	Objective	Approach	Outcome
Third Stage Review and Assessment	 Accurate and detailed assessment of both current and future air quality. Assess the likelihood of the air quality objectives being exceeded. 	 Use of validated modelling and quality- assured monitoring methods to determine current and future pollutant concentrations. 	
	 Identify the geographical boundary of any exceedences, and description of those areas, if any, proposed to be designated as an AQMA. 	 The assessment will need to consider all locations where public exposure is relevant. For each pollutant of concern, it may be necessary to construct a detailed emissions inventory and model 	• Determine the location of any necessary Air Quality Management Areas (AQMAs). Once an AQMA has been identified, there are further sets of requirements to be considered.
	designated as an AQIVIA.	the extent, location and frequency of potential air quality exceedences.	 A further assessment of air quality in the AQMA is required within 12 months which will enable the degree to which air quality objectives will not be met and the sources of pollution that contribute to this to be determined. A local authority must also prepare a written action plan for achievement of the air quality objective. Both air quality reviews and action plans are to be made publicly available.

AEA Technology 11

Local authorities are expected to have completed review and assessment of air quality by December 2000. A further review will also need to be completed for the purposes of the Act before the target date of 2003.

2.3 LOCATIONS THAT THE REVIEW AND ASSESSMENT MUST CONCENTRATE ON

For the purpose of review and assessment, the authority should focus their work on locations where members of the public are likely to be exposed over the averaging period of the objective. Table 2.4 summarises the locations where the objectives should and should not apply.

Table 2.4 Typical locations where the objectives should and should not apply

Averaging Period	Pollutants	Objectives should apply at	Objectives should <i>not</i> generally apply at
Annual mean	 1,3 Butadiene Benzene Lead Nitrogen dioxide Particulate Matter (PM₁₀) 	 All background locations where members of the public might be regularly exposed. 	Building facades of offices or other places of work where members of the public do not have regular access.
		Building facades of residential properties, schools, hospitals, libraries etc.	Gardens of residential properties.
			• Kerbside sites (as opposed to locations at the building façade), or any other location where public exposure is expected to be short term
24 hour mean and 8-hour mean	 Carbon monoxide Particulate Matter (PM₁₀) Sulphur dioxide 	All locations where the annual mean objective would apply.	• Kerbside sites (as opposed to locations at the building façade), or any other location where public exposure is expected to be short term.
		• Gardens of residential properties.	

Table 2.4 (contd.) Typical locations where the objectives should and should not apply

Averaging Period	Pollutants	Objectives should apply at	Objectives should generally not apply at
1 hour mean	Nitrogen dioxideSulphur dioxide	 All locations where the annual mean and 24 and 8-hour mean objectives apply. 	 Kerbside sites where the public would not be expected to have regular access.
		 Kerbside sites (e.g. pavements of busy shopping streets). 	
		 Those parts of car parks and railway stations etc. which are not fully enclosed. 	
		 Any outdoor locations to which the public might reasonably expected to have access. 	
15 minute mean	Sulphur dioxide	 All locations where members of the public might reasonably be exposed for a period of 15 minutes or longer. 	

It is unnecessary to consider exceedences of the objectives at any location where public exposure over the relevant averaging period would be unrealistic, and the locations should represent non-occupational exposure.

Key Points

- ◆ The GB Environment Act 1995 has required the development of a National Air Quality Strategy for the control of air quality.
- ♦ A central element in the Strategy is the use of air quality standards and associated objectives based on human health effects that have been included in the Air Quality Regulations.
- ♦ The Strategy uses a local air quality management approach in addition to existing national and international legislation. It promotes an integrated approach to air quality control by the various actors and agencies involved.
- Air quality objectives, with the exception of ozone, are to be achieved by specified dates up to the end of 2005 (2008 for one lead objective).
- ♦ A number of air quality reviews are required in order to assess compliance with air quality objectives. The number of reviews necessary depends on the likelihood of achieving the objectives.

3 Review and assessment of nitrogen dioxide

3.1 INTRODUCTION

Nitrogen oxides are formed during high temperature combustion processes from the oxidation of nitrogen in the air or fuel. The principal source of nitrogen oxides, nitric oxide (NO) and nitrogen dioxide (NO₂), collectively known as NO_x , is road traffic, which is responsible for approximately half the emissions in Europe. NO and NO_2 concentrations are therefore greatest in urban areas where traffic is heaviest. Other important sources are power stations, heating plant and industrial processes.

Nitrogen oxides are released into the atmosphere mainly in the form of NO, which is then readily oxidised to NO_2 by reaction with ozone. Elevated levels of NO_x occur in urban environments under stable meteorological conditions, when the air mass is unable to disperse.

Nitrogen dioxide has a variety of environmental and health impacts. It is a respiratory irritant, may exacerbate asthma and possibly increase susceptibility to infections. In the presence of sunlight, it reacts with hydrocarbons to produce photochemical pollutants such as ozone. In addition, nitrogen oxides have a lifetime of approximately 1 day with respect to conversion to nitric acid. This nitric acid is in turn removed from the atmosphere by direct deposition to the ground, or transfer to aqueous droplets (e.g. cloud or rainwater), thereby contributing to acid deposition.

3.1.1 Standards and objectives for nitrogen dioxide

The national air quality objectives for NO₂ are:

- An annual average concentration of 40 μg m⁻³ (21 ppb); to be achieved 31st December 2005
- $200 \mu g \text{ m}^{-3}$ (105 ppb) as an hourly average with a maximum of 18 exceedences in a year to be achieved 31^{st} December 2005

Modelling studies suggest that in general achieving the annual mean of $40~\mu g~m^{-3}$ is more demanding than achieving the hourly objective. If the annual mean is achieved, the modelling suggests the hourly objectives will also be achieved.

3.1.2 The National Perspective

All combustion processes produce some NO_x , but only NO_2 is associated with adverse effects on human health. The main sources of NO_x in the United Kingdom are road transport, which, in 1997 accounted for about half of the emissions, power generation (20%), and domestic sources (4%). In urban areas, the proportion of local emissions due to road transport sources is larger.

The results of the analysis set out in the National Air Quality Strategy suggest that for NO_2 a reduction in NO_x emissions over and above that achievable by national measures will be required to ensure that air quality objectives are achieved everywhere by the end of 2005. Local authorities with major roads, or highly congested roads, which have the potential to result in elevated levels of NO_2 in relevant locations, are expected to identify a need to progress to the second or third stage review and assessment for this pollutant.

1.23.2BACKGROUND CONCENTRATIONS OF NITROGEN DIOXIDE

Background concentrations were obtained for the Ballymena area using the maps on the UK National Air Quality Information Archive web site http://www.aeat.co.uk/netcen/airqual/home.html (figure 3.2)

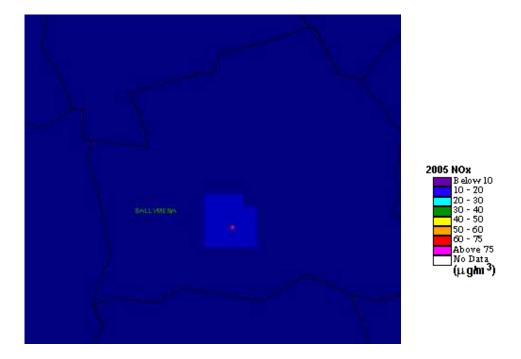


Figure 3.2 Background NO_x concentrations 2005

A maximum background NOx estimate of $13.9 \mu g/m^3$ has been estimated for 2005 in the Ballymena Borough Council region.

1.33.3MONITORING OF NITROGEN DIOXIDE

3.3.1 Diffusion tube data

Monthly average concentrations of NO_2 have been measured with diffusion tubes at sites in Ballymena since 1997. The Results for 2000 and 2001 are shown here. The data are summarised in Table 3.3.1 and monthly average data are presented in Appendix 1. The monitoring period is representative of a full year and therefore the period average concentrations can be compared with the annual mean objective. Analysis of the tubes was carried out by Lambeth Scientific Services Limited which was found to have a bias of 1.2 % in 2000 and a negative bias of 9.8% in 2001 relative to an automatic analyser (Bush, 2001 & Loader, 2002) (In 2001, diffusion tubes were compared for two periods. Lambeth Scientific Services showed a marked difference between their results for the 2 exposure periods in the intercomparison; bias +8.8% in the 1st period, -28.4% in the 2nd. Therefore the mean bias of -9.8% has been used in this assessment as it is felt that this provides the best estimate.)

Table 3.3.1 Annual average concentrations measured at locations in the Ballymena area.

Site Name	Site Type	Average NO ₂ μgm ⁻³ uncorrected for bias	Average NO ₂ µgm ⁻³ corrected for bias
Leighinmohr Avenue	В	9.9 (2000)	9.8 (2000)
Leighinmohr Avenue	В	11.3 (2001)	12.4 (2001)
Galgorm Road	K	26.7 (2000)	26.4 (2000)
Galgorm Road	K	20.5 (2001)	22.5 (2001)
Cullybackey (Main St)	K	20.1 (2001)	22.0 (2001)
Cullybackey Rd	K	14.0 (2001)	15.4 (2001)
Ballymoney Rd	K	21.8 (2001)	24.0 (2001)
Ballyloughan Avenue	В	11.8 (2001)	13.0 (2001)
Ballyloughan Avenue	В	12.2 (2000)	12.0 (2000)
George St	K	34.1 (2001)	37.4 (2001)
Wellington St	K	18.8 (2001)	20.7 (2001)
Ballymoney St	K	22.2 (2001)	24.3 (2001)
Ballymoney St	K	23.8 (2000)	23.5 (2000)
Queen St	K	25.7 (2001)	28.2 (2001)
Queen St	K	24.5 (2000)	24.2 (2000)
North Rd	K	21.6 (2001)	23.7 (2001)
Princess St	K	21.6 (2000)	21.4 (2000)
Greenrale St	K	17.7 (2000)	17.5 (2000)
Patrick Pl	K	16.4 (2000)	16.2 (2000)

K=kerbside 1-5m from a busy road

B = background in a residential area more than 50 metres from a busy road.

None of the diffusion tubes placed at background and kerbside locations exceeded the annual mean AQS for nitrogen dioxide of $40 \,\mu g/m^3$. Therefore it is predicted that none of the locations will exceed the objective in 2005.

3.4 IMPACT OF ROAD TRAFFIC ON CONCENTRATIONS OF OXIDES OF NITROGEN

The Stage one Review and Assessment for Ballymena Borough Council identified various roads as needing further study in a Stage two assessment. The concentrations at these kerbside locations were estimated using the Design Manual for Roads and Bridges (DMRB) using the traffic flow data provided by Ballymena Borough Council. The effect of junctions has been taken into account in DMRB where traffic data have been provided. Traffic flow details are given in Appendix 2. The model has been used to predict nitrogen dioxide concentrations for 2005

Concentrations have been assessed at traffic speeds (20 kph at road junctions and 32 kph on single roads). The speed of 20 kph is representative of traffic congestion and will give a conservative estimate. The distance from the receptor to the centre of the road and from the receptor to the kerb of the road are required by DMRB. These distances were estimated from maps provided by Ballymena

Borough Council. The % HDV was not available for the majority of roads. An estimate of 7.3% HGV has been used according to the Northern Ireland Roads Service based on measurements of 114 roads.

Table 3.4 lists the annual average and 99.8th percentile of maximum hourly average kerbside concentrations (equivalent to 18 exceedences per year) of nitrogen dioxide predicted for 2005 in the Ballymena Borough Council area. Following advice given in LAQM TG4(00), the 99.8th percentile of hourly averages has been estimated as 3.5 times the annual mean for roadside locations. For 2005, annual average concentrations of nitrogen dioxide are predicted to be over 40µg m⁻³ at five locations.

Table 3.4 Nitrogen dioxide concentrations at roadside locations in Ballymena Borough Council

Description of Link	NO ₂ Annual mean (μg m ⁻³) 2005	NO ₂ 99.8th percentile of hourly averages (μg m ⁻³) 2005
Larne Street	20.7	72.5
Shelling Hill Rd	17.9	62.7
Linenhall St	32.2	112.9
Larne Rd Link Junc	50.7	177.5
Fenaghy Rd	18.8	65.7
Cushendall Rd	21.4	74.7
Doury Rd junc. with Grove Rd	25.0	87.5
Cullybackey Rd, N. of NorthRd	21.8	76.4
North Road	25.6	89.5
Frys Rd	18.9	66.0
Ballymoney Rd, No. of Parkway	24.2	84.8
Ballymoney Rd, on town side of Grove Rd	27.1	94.8
Parkway (from Ballymoney Rd, Thomas St)	30.7	107.4
Thomas St	23.8	83.3
Hill St	17.4	60.9
William St	19.3	67.5
Parkway (from Thomas St, Chapel Rdbt)	48.0	168.1
Duke St	19.5	68.4
Mount St / Duke St	26.2	91.8
Ballymoney St (between Greenvale & Alexander St)	26.1	91.5
Fountain Place (between Ballymoney Rd & Albert Pl)	24.3	85.0
North Rd junc with Galgorm Rd	46.8	163.8
Wellington Street	28.1	98.2
Church St	20.2	70.7
Broughshane St (outside Camerons)	19.8	69.3
Ballymena Rd	28.8	100.8
Ballee Rd East (between Larne Rd & Ballee Rd East)	29.4	102.8
M2 (At Crebilly Rd bridge)	33.3	116.4
A36 (Moorfields Rd, E of junc B59 Tully Rd)	14.3	50.0
A42 Galgorm Rd	29.5	103.3

Broughshane Rd (at Chapel corner)	19.1	66.8
Cushendall Rd (N. of rdbt)	13.2	46.2
Crankhill Rd (at Teeshan)	25.3	88.6
North Rd (between Greenmount & Audley)	23.0	80.4
A42 Raceview Rd	22.9	80.3
B62 Main St	28.6	100.3
Lower Bridge St	39.4	138.0
Galgorm Rd (outside police station)	31.9	111.6
Granville Drive	18.4	64.4
Queen St (S. of junc. with Salisbury Sq).	28.7	100.5
Queen St / Ballymena Rd / Wakehurst	48.4	169.6
Tardree Grove	18.7	65.4
Waveney Rd	21.3	74.4
Harryville Rdbt	40.6	142.3
Cushendall Rdbt	37.0	129.3
North Rd towards Culleybackey Rd	23.5	82.4
Grove Rdbt	34.7	121.6

3.5 CONCLUSIONS FOR NITROGEN DIOXIDE CONCENTRATIONS IN THE BALLYMENA BOROUGH COUNCIL AREA

Emissions arising from road transport in a few locations in the Ballymena Borough Council area at busy road junctions may cause an exceedence of the annual average objective. It is recommended that diffusion tube monitoring is undertaken at the identified receptors below and then consideration be given to proceeding to a Stage 3 review and assessment.

- Larne Rd link junction
- Parkway (from Thomas St to Chapel Rdbt)
- North Rd junc. with Galgorm Rd
- Queen St / Ballymena Rd / Wakehurst Junction
- Harryville Rdbt

4 Review and assessment of PM₁₀

4.1 INTRODUCTION

Airborne particulate matter varies widely in its physical and chemical composition, source and particle size. Particles are often classed as either primary (those emitted directly into the atmosphere) or secondary (those formed or modified in the atmosphere from condensation and growth). PM_{10} particles (the fraction of particulates in air of very small size, $<10 \, \mu m$ aerodynamic diameter) can potentially pose significant health risks as they are small enough to penetrate deep into the lungs. Larger particles are not readily inhaled.

A major source of fine primary particles is combustion processes, in particular diesel combustion, where transport of hot exhaust vapour into a cooler tailpipe or stack can lead to spontaneous nucleation of "carbon" particles before emission. Secondary particles are typically formed when low volatility products are generated in the atmosphere, for example the oxidation of sulphur dioxide to sulphuric acid. The atmospheric lifetime of particulate matter is strongly related to particle size, but may be as long as 10 days for particles of about 1 μ m in diameter.

Concern about the potential health impacts of PM_{10} has increased very rapidly over recent years. Increasingly, attention has been turning towards monitoring the smaller particle fraction, $PM_{2.5}$, which is capable of penetrating deepest into the lungs, or to even smaller size fractions or total particle numbers.

4.1.1 Standards and objectives for particulate matter

The Air Quality Strategy objectives to be achieved by 31st December 2004 are:

- An annual average concentration of 40 μg m⁻³ (gravimetric);
- A maximum 24-hourly mean concentration of 50 μg m⁻³ (gravimetric) not to be exceeded more than 35 times a year.

4.1.2 The National Perspective

National UK emissions of primary PM_{10} have been estimated as totalling 184,000 tonnes in 1997. Of this total, around 25% was derived from road transport sources. It should be noted that, in general, the emissions estimates for PM_{10} are less accurate than those for the other pollutants with prescribed objectives, especially for sources other than road transport.

The Government established the Airborne Particles Expert Group (APEG) to advise on sources of PM₁₀ in the UK and current and future ambient concentrations. Their conclusions were published in January 1999 (APEG, 1999)⁵. APEG concluded that a significant proportion of the current annual average PM₁₀ is due to the secondary formation of particulate sulphates and nitrates, resulting from the oxidation of sulphur and nitrogen oxides. These are regional scale pollutants and the annual concentrations do not vary greatly over a scale of tens of kilometres. There are also natural or seminatural sources such as wind-blown dust and sea salt particles. The impact of local urban sources is superimposed on this regional background. Such local sources are generally responsible for winter

episodes of hourly mean concentrations of PM_{10} above 100 µg m⁻³ associated with poor dispersion. However, it is clear that many of the sources of PM_{10} are outside the control of individual local authorities and the estimation of future concentrations of PM_{10} are in part dependent on predictions of the secondary particle component.

1.24.2MONITORING OF PM₁₀

There has been no monitoring of PM₁₀ concentrations in the Ballymena Borough Council area.

1.34.3BACKGROUND CONCENTRATIONS OF PM₁₀

Estimates of background concentrations of PM_{10} were obtained for the Ballymena Borough Council area using the maps on the UK National Air Quality Information Archive web site http://www.aeat.co.uk/netcen/airqual/home.html. Figure 4.3 shows that the estimated annual average background concentration for 2004 in the Ballymena Borough Council area was 22.5 μ g/m³ or lower.

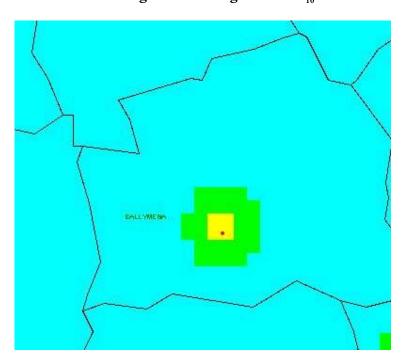
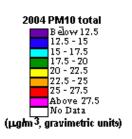



Figure 4.3 Background PM₁₀ concentrations 2004 (µg m⁻³)

4.4 IMPACT OF ROAD TRAFFIC ON PM₁₀

As recommended in the GB Government Guidance LAQM.TG4 (00) DMRB has been used to predict PM_{10} concentrations for 2004 from road traffic. The estimated maximum background concentration for 2004 of 22.5 μ g m⁻³ for the Ballymena Borough Council area has then been added to provide total predicted PM_{10} concentrations. Estimated traffic flows for 2004 as supplied by Ballymena Borough Council were used in these calculations.

GB Government Guidance LAQM.TG4(00) states that the 24-hour objective is highly unlikely to be exceeded if the annual mean concentration is below 28 μ g m⁻³, gravimetric.

Table 4.4 shows the 2004 predictions that may be compared against the objectives. For 2004, the method predicts annual average concentrations of PM_{10} less than 28 $\mu g \ m^{-3}$ at all of the locations modelled.

Table 4.4 Predicted PM₁₀ concentrations at roadside locations in the Ballymena Borough Council region.

Description of Link	PM10 Annual			
_	mean (μg/m³)			
	2004			
Larne Street	21.4			
Shelling Hill Rd	21.2			
Linenhall St	22.5			
Larne Rd Link Junc	24.8			
Fenaghy Rd	21.3			
Cushendall Rd	21.2			
Doury Rd junc. with Grove Rd	21.8			
Cullybackey Rd, N. of NorthRd	21.5			
North Road	21.7			
Frys Rd	21.3			
Ballymoney Rd, No. of Parkway	21.7			
Ballymoney Rd, on town side of Grove Rd	21.9			
Parkway (from Ballymoney Rd, Thomas St)	22.2			
Thomas St	21.7			
Hill St	21.2			
William St	21.3			
Parkway (from Thomas St, Chapel Rdbt)	24.7			
Duke St	21.3			
Mount St / Duke St	21.9			
Ballymoney St (between Greenvale & Alexander St)	21.9			
Fountain Place (between Ballymoney Rd & Albert Pl)	21.7			
North Rd junc with Galgorm Rd	24.6			
Wellington Street	22.0			
Church St	21.4			

Broughshane St (outside Camerons)	21.3			
Ballymena Rd	22.1			
Ballee Rd East (between Larne Rd & Ballee Rd East)	22.0			
M2 (At Crebilly Rd bridge)	22.1			
A36 (Moorfields Rd, E of junc B59 Tully Rd)	20.9			
A42 Galgorm Rd	22.0			
Broughshane Rd (at Chapel corner)	21.3			
Cushendall Rd (N. of rdbt)	21.4			
Crankhill Rd (at Teeshan)	21.6			
North Rd (between Greenmount & Audley)	21.6			
A42 Raceview Rd	21.6			
B62 Main St	22.0			
Lower Bridge St	23.4			
Galgorm Rd (outside police station)	22.4			
Granville Drive	21.2			
Queen St (S. of junc. with Salisbury Sq).	22.1			
Queen St / Ballymena Rd / Wakehurst	24.3			
Tardree Grove	21.3			
Waveney Rd	21.5			
Harryville Rdbt	23.6			
Cushendall Rdbt	22.9			
North Rd towards Culleybackey Rd	21.6			
Grove Rdbt	22.5			

4.5 CONCLUSIONS FOR PM₁₀ CONCENTRATIONS IN THE BALLYMENA BOROUGH COUNCIL AREA

Emissions from traffic are not predicted to lead to an exceedence of the PM_{10} objectives in 2004.

5 Review and assessment of sulphur dioxide

5.1 INTRODUCTION

Sulphur dioxide is a corrosive acid gas which combines with water vapour in the atmosphere to produce acid rain. Both wet and dry deposition have been implicated in the damage and destruction of vegetation and in the degradation of soils, building materials and watercourses. SO₂ in ambient air is also associated with asthma and chronic bronchitis.

The principal source of this gas is power stations burning fossil fuels which contain sulphur. Episodes of high concentrations of SO_2 now only tend to occur in cities in which coal is still widely used for domestic heating, in industry and in power stations. As some power stations are now located away from urban areas, SO_2 emissions may affect air quality in both rural and urban areas. Since the decline in domestic coal burning in cities and in power stations overall, SO_2 emissions have diminished steadily and, in most European countries, they are no longer considered to pose a significant threat to health.

5.1.1 Standards and objectives for sulphur dioxide

Two new objectives have been introduced for SO₂ in the AQS based on the limit values in the Air Quality Daughter Directive, and the three objectives are:

- 266 μg m⁻³ as a 15 minute mean (maximum of 35 exceedences a year or equivalent to the 99.9th percentile) to be achieved by the 31st December 2005
- $350 \,\mu g \, m^{-3}$ as a 1 hour mean (maximum of 24 exceedences a year or equivalent to the 99.7^{th} percentile) to be achieved by the 31^{st} December 2004
- 125 μg m⁻³ as a 24 hour mean (maximum of 3 exceedences a year or equivalent to the 99th percentile) to be achieved by the 31st December 2004

The 15 minute mean objective is the most stringent; the other two objectives will not be exceeded if this objective is not exceeded.

5.1.2 The National Perspective

Sulphur dioxide is emitted in the combustion of coal and oil. Emissions today are dominated by fossil-fuelled power stations which in 1997 accounted for 62% of the national total emission. Emissions from road transport are a very small fraction of the national total: 2%.

Exceedences of the 15-minute air quality standard currently occur near industrial processes for which the stack heights were designed to meet previous air quality standards and downwind of large combustion plant such as power stations. Exceedences are also possible in areas where significant quantities of coal are used for space heating. These large combustion plant are currently regulated

under BATNEEC and the EPA 1990, and will come under the provisions of the IPPC. The government considers that bearing in mind the envisaged change in fuel use, it does not expect exceedences of the 15-minute objective by 2005 from these sources. Sulphur dioxide concentrations are elevated at the kerbside but not sufficiently to exceed the air quality standard in the absence of other sources.

5.2 BACKGROUND CONCENTRATIONS OF SULPHUR DIOXIDE

Estimates of background concentrations were obtained for the Ballymena Borough Council area using the maps on the UK National Air Quality Information Archive web site http://www.aeat.co.uk/netcen/airqual/home.html. Figure 5.2 shows the most recent estimates available, for 1996. The maximum estimated annual average concentration for 1996 in the Ballymena Borough Council area has been estimated to be 66.6 μ g m $^{-3}$. Guidance LAQM.TG4(00) assumes that the annual mean at the end of 2004 and 2005 will be half the 1996 annual mean. However, due to the high level of domestic coal combustion in the region, it has been estimated that the annual mean at the end of 2004 / 2005 will be three-quarters of the 1996 mean. Thus the estimated maximum annual mean background concentration in the Ballymena Borough Council area in 2004 will be 49.9 μ g m $^{-3}$.

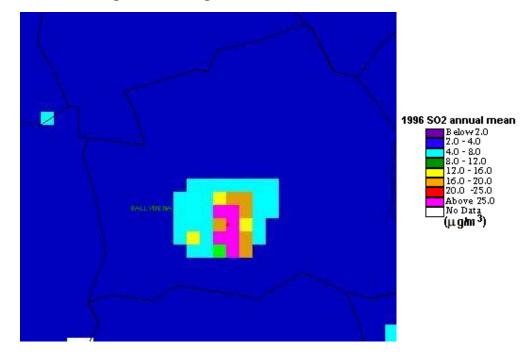


Figure 5.2 Background SO₂ concentrations 1996

1.25.3MONITORING OF SULPHUR DIOXIDE

There has been no monitoring of sulphur dioxide in the Ballymena Borough Council area.

5.4 IMPACT OF INDUSTRY ON CONCENTRATIONS OF SULPHUR DIOXIDE

The Stage 1 Review and Assessment Report prepared by Ballymena Borough Council stated that the following industries have the potential to emit significant quantities of sulphur dioxide.

- Michelin Tyres Plc
- Gallaher Ltd

These industries were considered in the Stage 1 review and assessment and the nomogram supplied in the Pollutant Specific Guidance was used to determine whether a Stage 2 would be required. It was recommended that a stage 2 was carried out for the two above industries. In this assessment, nomograms in GSS (Guidance for estimating impacts from Stationary Sources) have been used.

5.4.1 Michelin Tyres Plc

Michelin Tyres are located on Raceview Road in Ballymena.

Table 5.4.1 Specifications of combustion processes at Michelin Tyres Plc.

	Michelin Tyres Plc
Temperature of emissions (°C)	175
Stack height (m)	49
Stack diameter (m)	4 * 0.69
SO ₂ grams/second	11.19
Discharge velocity (m/s)	21

The discharge velocity has been estimated from the power rating of the two boilers to be approximately 21 m/s. A background concentration of 49.9 μ g/m³ has been estimated for the area in 2004/5 (see Section 5.2).

Applying the above information to the graphs in GSS, the following SO₂ concentrations are obtained:

The 99.9^{th} percentile of the 15 minute mean was estimated to be 157.5 $\mu g/m^3$

The objective for the 15 minute mean is $266\mu g/m^3$. This is the most stringent of the objectives and therefore it is likely that the other longer term objectives for sulphur dioxide will also be met.

The model predicts that the 15 minute mean objective will be met and therefore it is not necessary to proceed to a stage 3 review and assessment for Michelin Tyres Plc.

5.4.2 Gallaher Ltd

Gallaher Ltd process tobacco and is located on Galgorm Road in Ballymena.

Table 5.4.2 Specifications of combustion processes at Gallahers.

	Gallahers
Temperature of emissions (°C)	200
Stack height (m)	3*30
Stack diameter (m)	3*0.6
SO ₂ grams/second	5
Discharge velocity (m/s)	7.5

The lowest discharge velocity has been used in this assessment. Following advice in the Pollutant Specific Guidance, as there are multiple stacks at the same site a precautionary approach has been taken and it has been assumed that the total SO₂ emission from all three stacks are released from the smallest stack.

A background concentration of 49.9 μ g/m³ has been estimated for the area in 2004/5 (see Section 5.2).

Applying the above information to the graphs in GSS, the following SO₂ concentrations are obtained:

The 99.9th percentile of the 15 minute mean was estimated to be 198µg/m³

The objective for the 15 minute mean is 266µg/m³. This is the most stringent of the objectives and therefore it is likely that the other longer term objectives for sulphur dioxide will also be met.

The model predicts that the 15 minute mean objective will be met and therefore it is not necessary to proceed to a stage 3 review and assessment for Gallahers.

5.5 CONCLUSIONS FOR SULPHUR DIOXIDE CONCENTRATIONS IN THE BALLYMENA BOROUGH COUNCIL AREA

It is concluded that a stage 3 review and assessment is not necessary for Michelin Tyres or Gallaher.

6 Conclusions and recommendations for each pollutant

6.1 NITROGEN DIOXIDE

Emissions arising from road transport at xx road junctions in the Ballymena Borough Council area may cause an exceedence of the nitrogen dioxide objective. It is recommended that diffusion tube monitoring is undertaken at the identified receptors below and then consideration be given to proceeding to a Stage 3 review and assessment.

- Larne Rd link junction
- Parkway (from Thomas St to Chapel Rdbt)
- North Rd junc. with Galgorm Rd
- Queen St / Ballymena Rd / Wakehurst Junction
- Harryville Rdbt

6.2 PARTICULATE MATTER (PM₁₀)

Emissions from traffic are not predicted to lead to an exceedence of the PM₁₀ objectives in 2004.

6.3 SULPHUR DIOXIDE

It is concluded that the Strategy objectives for sulphur dioxide are likely to be achieved by 2004. A stage 3 review and assessment is not necessary for emissions from Michelin Tyres or Gallahers.

7 References

- 1. DETR (2000) The Air Quality Strategy for England, Scotland, Wales and Northern Ireland. Department of the Environment, Transport and the Regions. Cm 4548, SE 2000/3, NIA 7.
- 2. Review and Assessment : Pollutant Specific Guidance LAQM TG4(00) ISBN 1 85112 387 3DETR May 2000
- 3. The Air Quality (England) Regulations 2000 DETR April 2000
- 4. EA (1998b) Guidance for estimating the air quality impact of stationary sources. Guidance Note 24.
- 5. APEG (1997) Source apportionment of airborne particulate matter in the United Kingdom. Report of the Airborne Particles Expert Group.
- 6. Abbott, J. and Vincent, K. (1999) Dispersion modelling of SO₂ concentrations in the United Kingdom for comparison with the National Air Quality Strategy. A report produced for the Department of the Environment, Transport and the Regions. AEAT-5120 Issue 1. AEA Technology Environment, Culham, Abingdon, Oxon., OX14 3ED.
- 7. Bush (2000). Summary results from the UK NO₂ network field inter comparison exercise 1999. A report produced for the Department of the Environment, Transport and the Regions, the Welsh office, the Scottish office and the Department of the Environment for Northern Ireland. AEA Technology Plc.
- 8. Stedman, JR, Bush, TJ, Murrells, TP and King K (2001). Baseline PM10 and NOx projections for PM10 objective analysis. AEA Technology, National Environmental Technology Centre. Report AEAT/ENV/R/0728
- 9. Clarke, RH. A model for short and medium range dispersion of radionuclides released to the atmosphere. A first report of a working group on atmospheric dispersion. NRPB R91. National Radiological Protection Board, Harwell, Didcot. September 1979.

Appendices

CONTENTS

Appendix 1 Local air quality monitoring data available Appendix 2 Traffic flow and speed data and %HDVs

Appendix 1

CONTENTS

Appendix 1 Nitrogen dioxide passive diffusion tube sampler monitoring data

	Jan- 00	Feb- 00	Mar- 00	Apr-	May -00	Jun- 00	Jul- A	Aug- 9	Sep-	Oct-	Nov- I	Dec-		verage(after being brrected for bias)	2005
Leighinmohr Avenue	15	15	8	15	4	4	6	8	4 ו	na	15	15	9.9	9.8	8.3
Galgorm Rd	34	63	25	23	27	15	19	29	19	36	4	27	26.7	26.4	24.0
Ballyloughan	13	29	15	8	6	6	6	10	10	13	na	19	12.2	12.0	10.2
Avenue															
Ballymoney St	na	19	11	23	19	23	25	31	31	34	23	23	23.8	23.5	21.3
Queen St	44	6	29	_	11	15	21	25	21	32	46	19	24.5	24.2	22.0
Princess St	36	34	11	23	11	10	17	19	25	21	32	19	21.6	21.4	19.4
Greenrale St	25	34	13	11	10	10	10	15	15	23	17	29	17.7	17.5	15.9
Patrick PI	19	23	na	na	15	10	11	19	17	17	21	11	16.4	16.2	14.7
	Jan F	eb- M	1ar- A	Apr- N	Mav-	Jun-	Jul- A	Aua- S	Sep-	Oct-	Nov- A	verac	je (before	Average(after	2005
	-01	01	01	01	01	01	01	01	01	01		_	corrected	correction for	
											fo	or bias	s)	bias)	
Leighinmohr		25	15	10	15	4	4	11	8	10	11		11.3	12.4	10.9
Avenue															
Galgorm Rd	n	а	32	31 na		na	11	17	27	6	19		20.5		20.4
Cullybackey (Main					31	8	11	19	11	40 n	/a		20.1	22.0	20.0
St) Cullybackey Rd						4	8	6	15	31	21		14.0	15.4	14.0
Ballymoney Rd					32	15	25	19	11	31	19		21.8		21.8
Ballyloughan		15	19	6	11	11	15	8	6	11	15		11.8		11.5
Avenue		10	10	J			10	J	U		10		11.0	10.0	11.0
George St						17	32	48	29	48	31		34.1	37.4	34.0
Wellington St					29	15	19	15	17	23	13		18.8		18.8
Ballymoney St		23	32	19	34	10	15	17	15	29	27		22.2	24.3	22.1
Broughshane St					I	na	na	29	15	27	15				
Lisnevenagh Rd						13	na	13	10	19	15				
Queen St		34	40	29	29	na	23	19	4	34	19		25.7	28.2	25.6
North Road					36	13	17	25	17	27	15		21.6	23.7	21.5

AEA Technology

Appendix 2

CONTENTS

Appendix 2 Traffic flow data